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ABSTRACT

In this work we present travelling wave solutions and conservation laws
of the Korteweg-de Vries-Burgers equation with power law nonlinearity.
This is a modification of the Korteweg-de Vries-Burgers equation which
was derived for a wide class of nonlinear system in weak nonlinearity
and long wavelength approximation. Lie symmetry method along with
Kudryashov’s approach are used to obtain exact solutions while the new
theorem due to Ibragimov is used to construct conservation laws.

Keywords: Travelling wave solutions, conservation laws and Korteweg-
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1. Introduction

In this paper we study the Korteweg-de Vries-Burgers equation with power
law nonlinearity given by

ut + αunux − βuxx + γuxxx = 0. (1)

When n = 1 this equation reduces to the Korteweg-de Vries-Burgers equation
which was derived for a wide class of nonlinear system in weak nonlinearity
and long wavelength approximation Sayed and Danaf (2002).

Nonlinear partial differential equations are widely used as models to de-
scribe physical phenomena in different fields of applied sciences, such as fluid
mechanics, solid state physics, plasma physics and plasma waves. A basic math-
ematical problem for such models is to obtain closed form solutions. Different
methods (see Mhlanga and Khalique (2013) and references therein) have been
developed and used to find different kinds of solutions of such physical mod-
els. Some of the methods used include the variational iteration method, the
exp-function method, the inverse scattering transform method, the sine-cosine
method, the Lie group method and the (G′/G)−expansion method.

In this work firstly we use the method of Lie symmetry analysis along with
Kudryashov’s approach to find exact solutions of (1). Lie’s continuous symme-
try groups have applications in many fields such as invariant theory, control
theory, classical mechanics, relativity, etc. For the theory and application of the
Lie symmetry analysis methods, see for example, Olver (1993) and Ibragimov
(1994–1996).

On the other hand, conservation laws play a vital role in the study of differ-
ential equations and in many physical phenomena. In mathematics, it provides
one of the basic principles in formulating and investigating models Zhijie and
Yiping (2014). The high number of conservation laws for a partial differential
equation guarantees that the partial differential equation is strongly integrable
and can be linearized or explicitly solved Bluman and Kumei (1989). There are
different methods for the construction of conservation laws Naz et al. (2008)
and Hereman and Nuseir (1997) and Wolf (2002). These include amongst oth-
ers the direct method, Noether’s approach, characteristic method, variational
approach, variational approach on the space of solutions of the differential equa-
tion, symmetry and conservation law relation, partial Noether approach and
Noether approach for a system and its adjoint. In the present work, the new
theorem due to Ibragimov Ibragimov (2007) is used to construct conservation
laws of (1).
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2. Similarity reduction and exact solutions

2.1 Similarity reduction of (1)

First we find the Lie point symmetries of (1) using the Lie algorithm Olver
(1993). These Lie point symmetries are then used to transform (1) into an
ordinary differential equation. Kudryashov’s approach Kudryashov (2012) is
then applied to the ordinary differential equation and as a result we obtain the
exact solutions of (1).

The symmetries of (1) will be generated by the vector field of the form

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (2)

Applying the third prolongation, pr(3)X, Olver (1993) to (1) leads to the
overdetermined system of linear partial differential equations

ξ1x = 0,

ξ1u = 0,

ξ2uuu = 0,

βξ2uu − 3γξ2xuu + γηuuu = 0,

2unαγξ2uu − β2ξ2uu + 3βγξ2xuu − βγηuuu = 0,

4unαγξ2uu − β2ξ2uu + 3βγξ2xuu − βγηuuu = 0,

6unαγξ2uu − β2ξ2uu + 3βγξ2xuu − βγηuuu = 0,

2βξ2xu − βηuu − 3γξ2xxu + 3γηxuu = 0,

βηxx − αunηx − γηxxx − ηt = 0,

6γηxuu − 6γξ2xxu + 4βξ2xu − 2βηuu + 3αunξ2u = 0,

3αunξ2u + 2βξ2xu − 3γξ2xxu + 3γηxuu − βηuu = 0,

5αβunξ2u − 9αγunξ2xu + 3αγunηuu + 4β2ξ2xu − 2β2ηuu − 6βγξ2xxu

+6βγηxuu = 0,

uξ2t − 2αuunξ2x − αnunη − 3γuηxxu − βuξ2xx + 2βuηxu + γuξ2xxx = 0,

2αβunξ2u − 9αγunξ2xu + 4β2ξ2xu + 3αγunηuu − 2β2ηuu − 6βγξ2xxu

+6βγηxuu = 0,

3α2γu2nξ2u − 2αβ2unξ2u + 9αβγunξ2xu − 3αβγunηuu − 2β3ξ2xu + β3ηuu

+3β2γξ2xxu − 3β2γηxuu = 0,

3γuηxxu − uξ2x − γuξ2xxx + αnunη + αnunξ1t + βuξ2xx − 2βuηxu

−αuunξ2x = 0,
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βuξ2t − αβnunη − αβuunξ2x + 3αγuunξ2xx − β2uξ2xx − 3αγuunηxu

+2β2uηxu + βγuξ2xxx − 3βγηxxu = 0.

Solving this system we obtain two translation symmetries

X1 =
∂

∂t
and X2 =

∂

∂x
. (3)

Considering the linear combination symmetry X = kX1 − ωX2, one can easily
solve the corresponding Lagrange system to obtain an invariant z = kx + ωt,
where k and ω are constants, and so the group-invariant solution of (1) is of
the form

u = F (z). (4)

Substituting the value of u from (4) into (1) we obtain the third-order nonlinear
ordinary differential equation

γk3F (3)(z)− βk2F ′′(z) + αkF (z)nF ′(z) + ωF ′(z) = 0. (5)

Integrating (5) once with respect to the variable z and taking the constant
of integration to be zero reduces it to the second-order nonlinear ordinary
differential equation

γk3F ′′(z)− βk2F ′(z) + αkF (z)n+1

n+ 1
+ ωF (z) = 0. (6)

We now use the transformation

F (z) = G(z)
1
n (7)

to transform (6) into the nonlinear ordinary differential equation for G, viz.,

n2ωG(z)2 + n3ωG(z)2 + αkn2G(z)3 − γ k3(n2 − 1)G′(z)2

+k2n(n+ 1)G(z){−βG′(z) + kγG′′(z)} = 0. (8)

2.2 Exact solutions of (1)

In this section we employ Kudryashov’s method Kudryashov (2012) to find
exact solutions of (1). Let us consider the solutions of (8) in the form

G(z) =

N∑
i=0

aiQ(z)i, (9)
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whereN is a positive integer that can be determined by the balancing procedure
as in Kudryashov (2012) and ai’s are constants to be determined. The function
Q(z) satisfies the first-order equation

Q′(z) = Q(z)2 −Q(z) (10)

whose solution is given by

Q(z) =
1

1 + ez
. (11)

In our case the balancing procedure yields N = 2, and so the solution of (8) is
of the form

G(z) = a0 + a1Q(z) + a2Q(z)2. (12)

Substituting (12) into (8) and making use of the equation (10) and then equat-
ing the coefficients of the powers of Q to zero, we obtain an algebraic system of
equations in terms of ai (i = 0, 1, 2). Solving this system of algebraic equations
with the aid of Maple, one possible set of values of the constants is

a0 = −2 γ k2(n+ 1)(n+ 2)

αn2
,

a1 =
4 γ k2(n+ 1)(n+ 2)

αn2
,

a2 = −2 γ k2(n+ 1)(n+ 2)

αn2
,

β =
γ k(n+ 4)

n
,

ω = −2 γ k2

n2

(
4n− 5kn− 18k + 16

)
.

As a result, a solution of the Korteweg-de Vries-Burgers equation with power
law nonlinearity (1) is of the form

F (z) =

{
a0 + a1

(
1

1 + ez

)
+ a2

(
1

1 + ez

)2}1/n

, (13)

where z = kx+ ωt and the values of a0, a1 and a2 are as given above.

3. Construction of conservation laws for (1)

In this section we construct conservation laws for the KdVB equation (1).
The new conservation theorem due to Ibragimov Ibragimov (2007) will be used.
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First we compute the adjoint of equation (1) which is given by

δ

δu
[v(ut + αunux − βuxx + γuxxx)] = 0, (14)

where δ/δu is the Euler-Lagrange operator defined as

δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

x

∂

∂uxx
−D3

x

∂

∂uxxx
(15)

and the total derivative operators Dt and Dx are given by

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · ·

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ · · · , (16)

respectively. Expanding Eq.(14) using (15) and (16) we obtain the adjoint
equation

vt + αunvx + βvxx + γvxxx = 0. (17)

In this case the system formed by the KdVB equation (1) together with its
adjoint equation is given by

ut + αunux − βuxx + γuxxx = 0, (18)
vt + αunvx + βvxx + γvxxx = 0. (19)

The third-order Lagrangian for this system of equations (18)-(19) is

L = v(ut + αunux − βuxx + γuxxx). (20)

Now using the conservation theorem Ibragimov (2007), the conserved vector
components are obtained using

T i = ξL+W
δL

δui
+
∑
s≥1

Di1 . . . Dis(W )
δL

δui1...is
, (21)

where L is the Lagrangian given in (20) and W = η − ξ1ut − ξ2ux is the Lie
characteristic function.

The KdVB equation (1) has two translation symmetries given in (3). The
Lie characteristic function corresponding to the time-translation symmetry
X1 = ∂/∂t is W = −ut. Applying the conservation theorem Ibragimov (2007),
the components of the conservation law of energy associated with X1 are

T t
1 = αvunux − βvuxx + γvuxxx,
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T x
1 = −αvunut − βvxut − γvxxut + βvuxt + γvxuxt − γvuxxt.

In the same manner, the Lie characteristic function corresponding to the space-
translation symmetry X2 = ∂/∂x is W = −ux. Hence, the associated conser-
vation law of linear momentum, has conserved vector

T t
2 = −vux,

T x
2 = vut − βvxux − γvxxux + γvxuxx.

4. Concluding Remarks

In this paper we studied the Korteweg-de Vries Burgers equation with power
law nonlinearity (1). We presented exact solutions of (1) using Lie symmetry
analysis along with Kudryashov’s method. The solutions obtained were travel-
ling wave solutions. Furthermore, we constructed conservation laws using the
new conservation theorem due to Ibragimov.
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